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In nonideal gas lattice Boltzmann �LB� models, obtaining the correct form of the pressure tensor is essential
in determining many of the statistical mechanical properties such as the surface tension and the density profile.
Here we outline a general approach for calculating the pressure tensor in LB models with interactions beyond
nearest neighbors. The statistical mechanical properties calculated from such a pressure tensor are shown to
agree very well with those measured from numerical experiments. Comparisons with alternative theories are
also made.
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I. INTRODUCTION

In recent years the lattice Boltzmann �LB� method has
evolved into a promising method of computational fluid dy-
namics �CFD� �1,2�. It is particularly promising in simulating
complex fluid flows as its kinetic nature allows direct mod-
eling of the microscopic physics responsible for the macro-
scopic complexity. For example, to simulate multiphase
flows using the LB method, one models the underlying phys-
ics that is responsible for the formation of multiple phases in
a fluid system instead of the dynamics of the interfaces. In
one of the approaches this was done by introducing an inter-
action among the constituent particles �3,4�. The application
of this class of nonideal gas LB models has been particularly
fruitful �5–9�.

In fluid simulations using the LB method, the macro-
scopic behavior of the fluid system, such as the dynamics of
the density, velocity, and temperature fields, the equation of
state, and the surface tension coefficient, are all conse-
quences of the microscopic or mesoscopic dynamics of the
distribution function. To be able to simulate a fluid system
with a given set of parameters, it is necessary to derive the
macroscopic properties from the microscopic ones that the
“input parameters” in LB models. Therefore, accurately solv-
ing the mesoscopic kinetic model to obtain the macroscopic
properties has been critical in the development of the LB
methods. This is particularly true for the models of complex
fluids as their macroscopic behaviors are more complex and
more difficult to obtain than those of an ideal gas.

In a nonideal gas system exhibiting multiple phases, many
of the macroscopic properties can be obtained through
knowledge of the part of the pressure tensor due to interac-
tions. In a continuum, calculating the pressure tensor from
the interaction potential is at the center of studies of capillary
phenomena �10�. Correspondingly, in the LB system, deter-
mination of the pressure tensor in the presence of intermo-
lecular interactions is also critical in the development of LB
models and methodology. For the nonideal gas LB model in
Refs. �3,4�, the pressure tensor was obtained for the simplest
case of nearest-neighbor interactions. Much of the macro-
scopic behavior was also derived. Recently it was found nec-

essary to extend the interaction beyond the range of the near-
est neighbors to improve the isotropy of the interface �11,12�
and to better control the surface tension �12�. Moreover, the
form of the pressure tensor has been debated and some of the
end results have rather significant consequences at the mac-
roscopic level �5,12,13�. In this paper, we reexamine this
issue and provide a general methodology for calculating the
pressure tensor for interactions over an arbitrary range. As an
example, we obtain the pressure tensor for the interaction
defined over two layers of neighbors in a two-dimensional
LB model. In agreement with �12�, we also found that while
the equation of state is determined essentially by the second-
order terms in the pressure tensor, the surface tension coef-
ficient is directly proportional to the fourth-order tensor con-
structed using the distance vectors of the interacting
neighbors.

The paper is organized as the following. In Sec. II, we
briefly review the nonideal gas LB models. The calculation
of the pressure tensor is carried out in Sec. III. The macro-
scopic properties of the pressure tensor is summarized in
Sec. IV. Finally in Sec. V, a comparison between our results
and an alternatively obtained pressure tensor is given.

II. LB MODEL FOR NONIDEAL GASES

We follow previously outlined notation �14�. The motion
of a fluid is described by a set of discrete single-particle
distribution function values �fa :a=1, . . . ,d� obeying the fol-
lowing dimensionless, velocity-discretized Boltzmann equa-
tion with a Bhatnagar-Gross-Krook �BGK� �15� collision
model:

� fa

�t
+ �a · �fa + g · ��fa = −

1

�
�fa�x,t� − fa

eq� ,

a = 1, . . . ,d , �1�

where x and t are spatial coordinates and time, � the relax-
ation time, g the acceleration of the body force, and ��a :a
=1, . . . ,d� the set of discrete velocities that coincide with the
abscissas of a Gauss-Hermite quadrature in velocity space. fa
is essentially the single-particle distribution function evalu-
ated at �a. The equilibrium distribution fa

eq is a truncated
Hermite expansion of the Maxwellian. At second order and
assuming constant temperature, it is*xiaowen@exa.com
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fa
eq = wan�1 + �a · u +

��a · u�2 − u2

2
� , �2�

where wa is the Hermite quadrature weight corresponding to
the abscissa �a, and n and u are the number density and
velocity of the fluid given by

n = 	
a=1

d

fa, nu = 	
a=1

d

fa�a. �3�

Hereinafter, all velocities are scaled with respect to the sound
speed. Sufficient quadrature accuracy and truncation level
ensure that n and u obey the correct hydrodynamic equations
�14�.

In the nonideal gas LB model �3�, the force experienced
by the particles at x from the particles at x� is assumed to be
in the following form:

F�x,x�� = − G�
x − x�
���x���x���x� − x� , �4�

where ��x� is a function of the local properties at x only.
Within the constraints that the interaction has to �a� satisfy
Newton’s third law and conserve momentum globally and
�b� be along the vector between the two interacting lattice
sites, the above form of interaction is perhaps the most gen-
eral one.

To model the van der Waals force, the function ��x� was
made to only depend on the density �3�—i.e., ��x�
=�(n�x�). Contrary to the case in continuum where the detail
of the interaction is given by a pairwise potential as a func-
tion of the distance between two interacting particles, in the
mesoscopic LB description, where the space is discretized
with a minimum interparticle distance, the interaction detail
is given by the function ��n� which plays the role of an
“effective mass.” The effect of the function ��n� can be heu-
ristically explained by the fact that the density is implicitly a
measure of the averaged distance between two particles.

For fast-decaying forces, if the sites that interact with the
particles on x are limited to their N neighbors, not necessar-
ily the nearest ones, the total force exerted on particles at x is
given by summing Eq. �4� over all x�. Requiring that the
interaction be isotropic—i.e., that G�x−x�� be a function of

ea
 only—we can define the normalizing factor w�
ea
2� and
write

F = − G��x�	
a=1

N

w�
ea
2���x + ea�ea, �5�

where G is the overall interaction strength. The force is re-
pulsive when G�0 and attractive when G�0.

The hydrodynamic consequences of the interaction at the
continuum limit can be obtained by letting the lattice scale
approach zero. On expanding ��x+ea� around x and defining

Ei1¯in
�n� � 	

a=1

N

w�
ea
2��ea�i1
¯ �ea�in

, �6�

the interaction force has the following Taylor expansion:

F = − G��x�	
n=0

�
1

n!
��n��:E�n+1�, �7�

where ��n�� is the rank-n tensor obtained by applying the
gradient operator � to � n times and the colon �“:”� stands
for full tensor contraction. The leading terms are

F = − Gc2�� � � +
e2c2

2
� � ��2�� + ¯� . �8�

It can be seen that the interaction force is essentially a func-
tion of the gradient and higher derivatives of the density
field. For F to be perfectly aligned with the density gradient,
the tensors E�n� must be fully isotropic:

E�n� = �0, n odd

encn��n�, n even,

 �9�

where en are arbitrary scalar constants, c the lattice constant,
and ��n� the rank-n fully symmetric tensor �16�. Given a
finite set of �ea�, it is impossible to have all E�n� isotropic.
However, the weight function w�
ea
2� can be optimized to
maximize the isotropy of E�n� �11,12�. For instance, with the
nearest neighbors on a two-dimensional �2D� square lattice,
only the tensors up to fourth order can be made isotropic. If
the next level of neighbors are included, tensors up to eighth
order can be made isotropic. In both cases, the coefficients e2
and e4 are given by the weights as

e2 = 2w�1� + 4w�2� + 8w�4� + 20w�5� + 16w�8� ,

e4 =
1

2
w�1� + 2w�2� + 8w�4� + 25w�5� + 32w�8� .

Without losing generality, it is convenient to normalize the
weights w�
ea
2� so that e2=1. In the case of nearest-neighbor
interactions—i.e., w�
ea
2�=0 for 
ea
2�2—the isotropic
conditions determines the two weights as

w�1� =
1

3
, w�2� =

1

12
, e4 =

1

3
. �10�

III. PRESSURE TENSOR CALCULATION

The intermolecular force of Eq. �5� induces an extra mo-
mentum transfer in addition to that caused by the free-
streaming of the molecules. In a continuum, the pressure
tensor contribution due to intermolecular force is by defini-
tion related to the force by

� · P = F . �11�

Apparently, knowing the force is insufficient to determine
the pressure tensor �10� due to the arbitrary gauge. The situ-
ation is further complicated in the discrete form by the fact
that the force field given by Eq. �8� is only an approximation
to Eq. �5�. Even after the gauge is somehow fixed, the pres-
sure tensor obtained by integrating an approximated force
does not guarantee exact mechanical balance.

Here we obtain the pressure tensor using its basic
definition—i.e., the momentum transfer rate through an area
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of surface. Given an infinitesimal area element dA and let-
ting dF be the interaction force through dA, the pressure
tensor P is defined as

dF = dA · P . �12�

By integrating over a closed volume, the physical essence of
the above is that the surface integral of the pressure tensor
over a closed volume has to equal to the total force acting on
the volume, namely:

� P · dA =� F dv . �13�

Using the Gauss integration theorem, we realize that Eq. �12�
is essentially the integral form of Eq. �11�. In discrete form,
the equation above becomes

	 P · A = 	
x

F , �14�

which will be our basis for deriving the pressure tensor.
Consider all interaction forces along a single force

vector—i.e., one of the ea in Eq. �5�. For simplicity, we plot
all the forces on a two-dimensional Cartesian lattice in Fig.
1. It can be seen that the number of force vectors across a
unit vertical surface element dA=ex is �ea�x and that across a
unit horizontal surface element is �ea�y. Therefore, if all
forces along ea are of the same magnitude—say, F—the
pressure tensor contribution by this class of forces is simply
feaea. To determine the pressure tensor contribution from a
force field where each force element has different magnitude,
we simply replace F by an averaged force strength, where
the average is over all force vectors across the surface area.

To illustrate, we first consider the case of the nearest-
neighbor interaction where all force vectors across any sur-
face element centered at x either start or end at x. The aver-
aged force magnitude for the forces going across x along the
vector ea is simply

−
Gw�
ea
2�

2
���x���x + ea� + ��x − ea���x�� . �15�

The pressure tensor at location x due to the interaction force
�5� is therefore

P = −
G

2
��x�	

a=1

N

w�
ea
2���x + ea�eaea. �16�

The above expression was previously given for the hexago-
nal lattice where w�
ea
2�=1 �4�.

Equation �16� is accurate in the case of nearest-neighbor
interactions where all forces acting on a lattice node either
start or end at that node. When the force range is extended
beyond the nearest neighbors so that force vectors through an
area element do not always pass through the lattice node at
the center or they stride across the lattice node, Eq. �16�
needs to be modified to take into account the variable force
magnitudes, although the number of force vectors along the
vector ea and going across a unit area element ea is still eaea.
As an example, we consider the interaction forces defined
over two layers of neighbors, as illustrated in Fig. 2
�12,17,18�. The 24 neighbors fall into five symmetry groups
which can be uniquely labeled by the square of the length of
the vectors. For instance, the group of vectors 9–12 have a
length of 2. For convenience, hereinafter we shall refer to
this group as group 4. The pressure tensor is the sum of the
contributions from each of the five groups which we will
consider one by one.

Groups 1 and 2 are the nearest neighbors. The contribu-
tions to the pressure tensor are given by Eq. �16�: i.e.,

FIG. 1. �Color online� Force flux through surface elements.
Numbers of force vectors along ea= �2,1� through a vertical and a
horizontal area element are proportional to �ea�x�=2� and �ea�y�=1�,
respectively.
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FIG. 2. �Color online� Interaction neighbors. Shown are all
forces acting on the site at the center. The interaction range is lim-
ited to the square of two layers for the convenience of computation.
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P1 = −
G

2
��x�	

a=1

8

w�
ea
2���x + ea�eaea. �17�

To calculate the contributions of groups 4 and 8—i.e., the
speed-2 counterparts of groups 1 and 2—let us consider the
force vectors of e9 as an example. Shown in Fig. 3�a� are
such vectors near a lattice site. The total numbers of interac-
tion pairs across a vertical and a horizontal area elements are
2 and 0, respectively, consistent with the previous analysis.
Taking into account the magnitudes of the three pairs of in-
teractions, the pressure tensor contribution of groups 4 and 8
can be written as

P2 = −
G

4
��x�	

a=9

16

w�
ea
2���x + ea�eaea

−
G

4 	
a=9

16

w�
ea
2���x −
ea

2
���x +

ea

2
�eaea. �18�

Note here that the interactions in the second terms have been
double counted for both ea and −ea, and therefore the addi-
tional factor of 1/2.

For group 5, it is clear from Fig. 3�b� that the contribution
comes equally from four classes of vectors. The contribu-
tions from F1 and F2 can be written as

P3 = −
G

4
w�5���x� 	

a=17

24

��x + ea�eaea, �19�

whereas those from F3 and F4 involve pair products among
the nearest neighbors. For brevity, we use two subscripts to
note the location of the neighbors: e.g., �1,1=��x+ex+ey�,
�0,−1=��x−ey�, and so on. The pressure tensor contribution
is

P4 =
G

4
w�5����1,1�−1,0 + �1,0�−1,−1�e17e17

+ ��1,1�0,−1 + �0,1�−1,−1�e18e18

+ ��0,1�1,−1 + �−1,1�0,−1�e19e19

+ ��−1,1�1,0 + �−1,0�1,−1�e20e20� . �20�

Finally the pressure tensor due to the interaction force of Eq.
�5� defined over the interaction range of 2 is the sum of
contributions from all five groups:

P = P1 + P2 + P3 + P4. �21�

Overall, we have a way of obtaining the pressure tensor
based on the principle of Eq. �14�. The number of interaction
pairs with the interaction force going across surface elements
centered at x is given by Eq. �16�, and the pressure tensor is
obtained by multiplying each interaction pair with an appro-
priate force strength. Consequently, Eq. �14� is guaranteed to
hold exactly, and moreover, the arbitrary gauge is removed
as the physical significance of the force flux is clear at the
discrete level.

IV. CONTINUUM LIMIT

The pressure tensor in the continuum limiter can be found
by substituting the Taylor expansion of ��x+	x� into Eqs.
�17�–�20�. The results are lengthy and unnecessary for our
purposes here. Thus, we choose to omit it and only consider
a one-dimensional two-phase equilibrium where all gradients
are in the same direction—say, the x direction. Taking into
account the constraints �9� and after summing all the frag-
ments in Eqs. �17�–�20�, the pressure tensor can be written as

Pxx =
Gc2

2
�2 +

Gc4

12
�
�d�

dx
�2

+ ��
d2�

dx2 � , �22a�

Pyy =
Gc2

2
�2 +

Gc4

4
���d�

dx
�2

+ 
�
d2�

dx2 � , �22b�

Pxy = Pyx = 0, �22c�

where 
=1−3e4, �=1+6e4, �=−4�w�5�+4w�8��, and 

=�+e4.

Following the previous approach �4�, at equilibrium, the
normal component of the pressure tensor, Pxx, must equal to
the constant static pressure in the bulk, p0. Combining with
the ideal gas part of the pressure, we have

p0 = n� +
Gc2

2
�2 +

Gc4

12
�
�d�

dx
�2

+ ��
d2�

dx2 � . �23�

Using the relation

d2�

dz2 =
1

2

d

d�
�d�

dz
�2

, �24�

we can integrate Eq. �23� to obtain

F1F2F3

(a)

(b)

F1

F2

F3

F4

FIG. 3. �Color online� Force vectors that contribute to the pres-
sure tensor. �a� Group-4 vectors and �b� group-5 vectors.
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�c
dn

dz
�2

=
8�1 − ����

Gc2��2 � �p0 − n� −
Gc2

2
�2� ��

�1+�dn ,

�25�

where �=−2
 /�= �6e4−2� / �6e4+1�. Since dn /dz vanishes
in the bulk of both phases, the densities in the gas and liquid
phases, denoted by ng and nl, respectively, must satisfy the
following relation:

�
ng

nl �p0 − n� −
G

2
�2� ��

�1+�dn . �26�

Using the equation above and the equation of state in both
phases,

p0 = ng� +
Gc2

2
�2�ng� = nl� +

Gc2

2
�2�nl� , �27�

nl, ng, and p0 can be solved to arbitrary precision by numeri-
cal integration. The surface tension coefficient is defined as

� � �
−�

�

�p0 − pT�dx = �
−�

�

�Pxx − Pyy�dx . �28�

Using Eqs. �22a�–�22c� and the boundary condition d� /dz
=0 at z= ��, we have

� = −
e4Gc4

2
�

ng

nl

��2dn

dz
dn . �29�

The extended interaction range only modifies the previous
results �4� by the constants � in Eqs. �25�. When the interac-
tion range reduces to that of the nearest neighbors—i.e.,
w�1�=1 /3, w�2�=1 /12, and w�4�=w�5�=w�8�=0—we have
e4=1 /3, 
=�=0, �=3, 
=1 /3, and �=0, recovering the
previous results. In particular, the normal component of the
pressure tensor in Eq. �23� is

p0 = n� +
Gc2

2
�2 +

Gc4

4
�

d2�

dx2 . �30�

It is important to note that the surface tension coefficient is
proportional to the single constant e4 independent of the
weights of w�5� and w�8�, while the equation of state is
completely determined by the constant e2. Essentially the
same feature was previously noted by Sbragaglia et al. �12�.
Given the � function, and therefore the equation state, the
surface tension can be adjusted independently by changing
e4, except for a small effect on the density profile through the
constant � in Eq. �25�. Interesting macroscopic consequences
are observed when the surface tension coefficient is adjusted
to a negative value �17,18�.

V. DISCUSSION

In this paper, a procedure is defined to obtain the pressure
tensor from a given interaction force. This procedure is based
on Eq. �14� instead of its continuum differential form of Eq.
�11� to ensure exact force balance in discrete form. As a
consequence, the Taylor expansion of the force and pressure
tensor, given by Eqs. �5� and �16�, respectively, do not satisfy
Eq. �11� term by term. We believe the reason is, at least
partially, that, although the long-wavelength limit of Eq. �14�
is Eq. �11�, the differential operator and the finite-difference
operator involved in the transition from Eq. �14� to Eq. �11�
do not commute. For the purpose of accurately predicting the
macroscopic behavior of the LB model, the accurate form of
Eq. �14� should be used.

Noticing the difference in the Taylor expansions of the
force and pressure tensor and with some additional argument
of matching results of thermodynamic theory, He and Doolen
�13� proposed that Eq. �30� should be replaced by the fol-
lowing expression:

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2 2.5 3

P
re

ss
ur

e

Density

EoS at G=-10
EoS at critical point

Shan & Chen (1994)
He & Doolen (2002)

Simulation at τ = 0.51

FIG. 4. �Color online� Equa-
tion of state for ��n�=exp�−1 /n�
�curves� and the equilibrium pres-
sure �horizontal lines� predicted
by the two theories outlined in
Refs. �4,13�. Simulation results at
�=0.51 are shown as circles.
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P = �n� +
G

2
�2 +

G

2
���2� +

1

2

��
2��	 −

G

2
� � � � ,

�31�

where a constant temperature and the D2Q9 �19� model is
assumed. Following the same calculation outlined above,
they obtained a slightly different expression corresponding to
Eq. �25�:

�dn

dz
�2

=
4�

G��2� �p0 − n� −
G

2
�2���

�2 dn . �32�

The prediction of the equilibrium pressure of the two-phase
system differs only in the parameter �. For nearest-neighbor
interactions, the theory given in this paper and Ref. �4� gives
�=0 while Ref. �13� gives �=1. A consequence of this dif-
ference is that according to Eq. �32�, the only potential con-
sistent with the Maxwell construction is ��n��n, which does
not lead to a valid liquid-vapor two-phase system, while ac-
cording to Eq. �25�, the potential consistent with the Max-
well construction is ��n�=exp�−1 /n�, which indeed gives
the basic features of a two-phase system.

We would like to point out that combining Eq. �11� and
macroscopic thermodynamic arguments which do not have

any microscopic link to the discrete LB dynamics is at least
inaccurate in predicting the macroscopic properties of the
discrete LB model. To show the differences of the two forms
of the pressure tensors, in Fig. 4 we compare the predictions
of the coexistence pressure by both theories—i.e., Eqs. �25�
and �32�—with result of numerical simulations. The com-
parison is made for the case of nearest-neighbor interactions
for which the present theory reduces to Ref. �4�. The p-�
curves corresponding to the potential ��n�=exp�−1 /n� are
plotted at both the critical temperature and a typical subcriti-
cal temperature. With this choice of the potential, the inte-
grals in both Eqs. �25� and �32� can be carried out analyti-
cally and nl, ng, p0, and � solved. Plotted as the two
horizontal lines is the pressure p0 as predicted by the two
theories. It is to be seen that Eq. �25� predicts coexistence
densities much more closely. It should also be noted that Eq.
�25� is exactly what the Maxwell construction requires for
this choice of �. Agreement with numerical results also im-
plies that the numerical results are consistent with the Max-
well construction.
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